invariant. The formulae obtained are correct up to $1/N^{3/2}$ order and contain some products of normalized structure factors whose signs are a priori unknown. The signs of these products are not very critical for the estimate of the sign of $E_{\mathbf{h}}E_{\mathbf{k}}E_{\mathbf{l}}E_{\mathbf{h}+\mathbf{k}+\mathbf{l}}$, but their magnitudes may affect the scale of the probability levels. Several formulae have been suggested in order to keep on an absolute scale the probability levels provided by the theory (i.e. on the same scale as the triplet relationships). In this connexion it seems that some role may be played, for large values of $|E_{h+k}|, |E_{h+1}|, |E_{k+1}|$ and small N, by the terms of order $1/N^2$. The variance of the sign relationships, in fact, is very sensitive to the terms of higher order when N is not too large, and assumes values remarkably different from one. The problem of the scale of the probability levels fortunately does not exist for middle and small $|E_{4,5,6}|$, because the terms of higher order are then negligible.

It would be useful to verify the conditions of validity of the formulae obtained and to test the scale of the probability levels. A positive verification of the theory here described would allow, in the direct procedures for sign determination, the use of quartet as well as triplet relationships on the same scale of reliability. A strong stimulus in this direction is the observation that the theory seems very suitable for identifying the negative invariants $E_{\mathbf{h}}E_{\mathbf{k}}E_{\mathbf{l}}E_{\mathbf{h}+\mathbf{k}+\mathbf{l}}$. In the field of negative invariants, in fact, the terms of order $1/N^{3/2}$ are negligible in comparison with the terms of order 1/N. These last terms involve only the magnitudes of the normalized structure factors and are unambiguous.

The work was stimulated by a meeting with Dr H. Schenk. The author is indebted to him for many helpful discussions and for his general interest.

References

- CRAMÉR, H. (1951). Mathematical Methods of Statistics. Princeton Univ. Press.
- GIACOVAZZO, C. (1974a). Acta Cryst. A 30, 522-524.
- GIACOVAZZO, C. (1974b). Acta Cryst. A30, 481-484.
- GIACOVAZZO, C. (1974c). I Metodi Diretti Nella Solusione Delle Strutture Cristalline. Milano: Tamburini.
- HAUPTMAN, H. A. (1974a). Acta Cryst. A 30, 472-476.
- HAUPTMAN, H. A. (1974b). Acta Cryst. A 30, 822-829.
- KLUG, A. (1958). Acta Cryst. 11, 515-543.
- SCHENK, H. (1973a). Acta Cryst. A 29, 77-82.
- SCHENK, H. (1973b). Acta Cryst. A 29, 480-481.
- SCHENK, H. (1974). Acta Cryst. A 30, 477-481.
- SCHENK, H. & DE JONG, J. G. H. (1973). Acta Cryst. A29, 31–34.
- SIMERSKA, M. (1956). Czech. J. Phys. 6, 1-7.

Acta Cryst. (1975). A 31, 259

On the Reliability of Different Formulations of the Quartets

By H. Schenk

Laboratory for Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam, The Netherlands

(Received 30 October 1974; accepted 2 November 1974)

Recently derived expressions [Giacovazzo (1975). Acta Cryst. A31, 252–259] for the reliability of quartets have been tested. For the negative quartets (NQ's) the new expressions lead to an improvement compared with the empirical estimates of the NQ reliability used so far. However, the reliability of all quartets can be better estimated by means of the weights of the empirically derived strengthened quartet relation (SQR).

Introduction

Recently phase relations between four reflexions, quartets, have shown to be very useful for the solution of special problems in direct methods. Strengthened Quartet Relations, referred to as SQR's, can be successfully employed for selecting a good starting set in symbolic-addition procedures and multisolution approaches (Schenk, 1973a). Negative quartets, referred to as NQ's (Hauptman, 1974; Schenk, 1974) and their two-dimensional analogues, the Harker-Kasper type relations (Schenk & de Jong, 1973; Schenk, 1973b) proved to be very useful to find the correct solution out of a set of \sum_2 solutions, particularly in symmorphic space groups.

In these cases the value q of the structure invariant

$$\phi_{H} + \phi_{K} + \phi_{L} + \phi_{-H-K-L} = q \tag{1}$$

is estimated with the magnitudes $|E_{H+K}|$, $|E_{H+L}|$, $|E_{K+L}|$ and the quantity

$$E_4 = N^{-1} |E_H E_K E_L E_{-H-K-L}| .$$
 (2)

For NQ's with $q \simeq \pi$, the value of E_4 has to be large and those of $|E_{H+K}|$, $|E_{H+L}|$ and $|E_{K+L}|$ have to be small.

It was empirically shown that for SQR's with $q \simeq 0$ the failure percentage as a function of

$$E_4^* = E_4 \left(1 + \frac{|E_{H+K}| + |E_{H+L}| + |E_{K+L}|}{E_0} \right) \tag{3}$$

is equal to that of the triplet relations as a function of

$$E_3 = N^{-1/2} |E_H E_K E_{-H-K}| . (4)$$

For centrosymmetric structures Giacovazzo (1975) has recently derived expressions for quartets which contain E_{H+K} , E_{H+L} and E_{K+L} explicitly. These formulae can in principle replace the former formulations of both NQ's and SQR's. The most simple expression is:

$$P_{+} = \frac{1}{2} + \frac{1}{2} \tanh \left\{ E_4 (E_{H+K}^2 + E_{H+L}^2 + E_{K+L}^2 - 2) \right\}$$
(5)

where P_+ is the probability that the product of signs s(H)s(K)s(L)s(-H-K-L) = +1. For small values of $|E_{H+K}|$, $|E_{H+L}|$ and $|E_{K+L}|$ the probability $P_+ \ll 0.50$ and for large values $P_+ \gg 0.50$. Expression (5) was obtained by approximating

$$P_{+} = \frac{1}{2} + \frac{1}{2} \tanh \left\{ E_{4} (E_{H+K}^{2} + E_{H+L}^{2} + E_{K+L}^{2} - 2 + 6N^{-1/2} E_{H+K} E_{H+L} E_{K+L}) \right\}.$$
 (6)

The aim of this paper is to explore the usefulness of the expressions (5) and (6) by comparing their reliability with that of the triplets, SQR's and NQ's.

Calculations

As a basis of the comparison of the reliabilities of the different relations, the reliability of the \sum_2 relation had been chosen. The probability that a triplet has a positive sign is given by

$$P_{+} = \frac{1}{2} + \frac{1}{2} \tanh E_3 \,. \tag{7}$$

This expression is similar to expressions (5) and (6). It is known that the SQR's, NQ's and triplets have identical failure percentages as function of E_4^* , E_4 and E_3 respectively (Schenk, 1973*a*, 1974). For them to be useful in practice this should also be the case for the new formulations of the quartets.

The two structures used to test expressions (5) and (6) are the same as were used in the paper on negative quartets (Schenk, 1974). The first is a model structure containing 10 atoms at random positions in the asymmetric unit of space group $P\overline{1}$ (N=20). The second is an aza-steroid of 20 atoms in $P\overline{1}$ (N=40). For both structures first all quartets are collected down to an E_4 limit value. This group of quartets is then employed to calculate the reliabilities of expressions (5) and (6).

In all tables the number of relations and the percentage of correct ones are given above the corresponding values of the arguments of the hyperbolic tangent. Unless stated otherwise, quartets are only taken into account for which two crossvectors (H+K,H+L) or one crossvector (H+K) are present in the set of measured reflexions, subtracting at the correct positions (E_{K+L}^2-1) and $(E_{K+L}^2+E_{H+L}^2-2)$ respectively (Giacovazzo, 1975).

Negative quartets

One of the important applications of the quartets is the use of NQ's for discrimination between the various \sum_2 solutions in symbolic addition (or multisolution) of symmorphic space groups. Therefore we selected those quartets for which the argument A_1 of the hyperbolic tangent of expression (5)

$$A_1 = E_4(E_{H+K}^2 + E_{H+L}^2 + E_{K+L}^2 - 2) \tag{8}$$

is negative. For the model structure these are given in Table 1 (column 2), together with the reference triplets (column 1) and weights N_1 given on an empirical basis (column 3):

 $N_1 = 2E_4\{1-3^{-1}(|E_{H+K}|+|E_{H+L}|+|E_{K+L}|)\}$ in the case when three crossvectors are present,

 $N_1 = 2E_4\{0.5 - 2^{-1}(|E_{H+K}| + |E_{H+L}|)\}$ for two crossvectors, and $N_1 = 0$ for one crossvector. The latter weights are approximately equal to the weights used in the Negative Quartet Criterion (NQC; Schenk, 1974). In Table 2 the corresponding numbers are given for the aza-steroid.

Table 1. Total number (nr) and percentage of correct relations for triplets and negative quartets [expression (5) and empirical weights] for a 20-atom model structure

	1		2	2	3		
	Triplets		Nega quarte		Negative quartets (empirical weights)		
E_3	nr	%	nr	%	nr	%	
$A_1 \\ N_1$							
3.0	8	100					
2.5	28	100					
2.0	94	100					
1.8	162	100	2 5	100			
1.6	272	100	5	100	1	100	
1.4	454	100	21	100	5	100	
1.2	764	99.5	44	100	21	100	
1.0	1370	98.6	75	100	49	100	
0.9	1844	97.6	92	100	71	100	
0.8	2531	95.8	116	100	103	100	
0 ∙7	3485	93.8	153	100	125	100	
0.6			218	97.7	153	98 ∙0	
0.2			277	97•5	192	97.4	
0.4			332	94.6	229	96.9	
0.3			373	93.3	277	93.5	
0.5			422	91.5	338	90.5	

From the tables it can be concluded that the negativity of a quartet is better predicted by means of expression (5). However, in view of the fact that the differences are rather small, this does not influence former conclusions on the use of negative quartets. The only

Table 2. Total number and percentage of correct rela-
tions for triplets and negative quartets for an aza-steroid

1 2 3 Negative quartets (empirical Negative Triplets weights) quartets (5) % % % E_3 nr nr nı A_1 N_1 7.0 100 8 6.0 21 100 5.0 61 100 4.0 143 100 100 3.0 353 100 100 1 1 2.5583 99.8 2 100 100 1 100 2.0 980 99.7 17 100 15 1.5 1823 99.2 38 100 40 100 1.4 2101 98.9 51 100 47 100 71 1.3 2438 98.4 98.6 63 98.4 98.7 97.8 98 98.9 81 1.2 2888 1.1 3395 96.9 139 95.0 112 97.3 93.9 95.2 1.0 165 124

difference from the procedure outlined previously for symmorphic space groups (Schenk, 1974) is that instead of using the NQC criterion the discrimination between the various \sum solutions is better achieved by

$$NQC2 = \sum_{H} \sum_{K} \sum_{L} A_{1} \times |\pi - (\phi_{H} + \phi_{K} + \phi_{L} + \phi_{-H-K-L})| \quad (9)$$

with $0 \le \phi_H + \phi_K + \phi_L + \phi_{-H-K-L} < 2\pi$.

Test of expression (5)

In Tables 3 and 4 the results of triplets, SQR's and quartets (5), calculated by means of expression (5), are given for the model structure and the aza-steroid respectively. When the results are compared, it must be taken into account that from a certain level of the argument down the quartet lists are not complete, because only quartets with E_4 larger than the limit are used. For instance, for the aza-steroid many of the quartets with $E_4 < 1.1$ have $A_1 > 1.1$; however these quartets do not appear in the tables. This means that for the smaller arguments the results are overestimations and in cases were all quartets $E_4 > 0$ are collected they will be worse.

From Tables 3 and 4 it can be seen that at the higher levels of the arguments E_3 , E_4 and A_1 the reliability of the quartets (5) is appreciably less than that of the triplets and SQR's. The argument of expression (5) can be rewritten as

$$A_1 = E_4 \{ 1 + (E_{H+K}^2 - 1) + (E_{H+L}^2 - 1) + (E_{K+L}^2) \} .$$
(10)

The first term is due to the quartet itself. In the second term H + K suggests that this term is due to the elimination of the phase of H+K from two triplets:

$$\left\{ \begin{array}{ccc} -H-K & H & K \\ H+K & L & -H-K-L \end{array} \right.$$

	Number and			
above var	iable values o	f arguments	for triplets	, empirical
SQR's a	and quartets	[expression	(5)], <i>for</i>	the model

		st	ructure				
	1	1 2			3		
	Trip	Triplets		-NQ's	Quartets (5)		
$E_3 \\ E_4$	nr	%	nr	%	nr	%	
A_1 20.0					2 15	100 100	
15·0 10·0 7·5					94 315	100 100 100	
5·0 4·0			3	100	1195 1966	100 100 99·9	
3·0 2·5	8 28	100 100	30 97	100 100	3080 3708	99∙8 99∙7	
2∙0 1∙8	94 162	100 100	453 819	100 99·9	4483 4618	99·3 99·1	
1·6 1·4	272 454	100 100	1562 2821	99·7 99·3	4887 5174	98·9 98·7	
1·2 1·0 0·9	764 1370 1844	99·5 98·6 97·6	4466 5474 5598	98·9 98·3 98·1	5487 5788	98·2 97·9	
0·9 0·8 0·7	2531 3485	95·8 93·8	5622 5622	98·1 98·1 98·1			

Table 4. Number and percentage of correct relations for triplets, SOR's and quartets (5) for the aza-steroid

-	1			2	3		
	Trip	Triplets		-NQ's	Quartets (5)		
E_3	nr	%	nr	%	nr	%	
E_4							
A_1							
25.0					2671	100	
20.0					4217	100	
15.0					6698	99.8	
10.0					9635	99.7	
9.0			5	100	10203	99.7	
8.0			28	100	10675	99.7	
7.0	8	100	73	100	11183	99.6	
6.0	21	100	185	100	11651	99.5	
5.0	61	100	454	100	12152	99 •4	
4.0	143	100	1213	100	12623	99·2	
3.0	353	100	3295	100	12994	99.0	
2.5	583	99.8	5813	99.8	13199	98.8	
2.0	980	99.7	10006	99.5	13405	98.5	
1.5	1823	<u>99∙2</u>	13114	98 .8	13644	98·3	
1.4	2101	98.9	13240	98.6			
1.3	2438	98 ∙4	13324	98.6			
1.2	2888	97.8	13339	98.6			
1.1	3395	96.9	13351	<u>98</u> .6			

leading to the same quartet H, K, L, -H-K-L. This means that the weight of $E_4(E_{H+K}^2-1)$ of this resulting quartet is less than the weights of either of the triplets. Thus

$$E_4(E_{H+K}^2 - 1) < N^{-1/2} |E_H E_K E_{H-K}|$$
(11)

$$E_{H+K}^2 - \frac{E_0 E_{H+K}}{E_L E_{H+K+L}} < 1.$$
 (12)

For the larger values of |E| it will often not be the case that the influence of the three quartets of the second

kind is overestimated in expression (5). This may be the reason of the insufficient reliability of this formula.

Reliability of less approximate expressions

Expression (6) contains a correction term

 $6N^{-1/2}E_{H+K}E_{H+L}E_{K+L}$ = $6N^{-1/2}|E_{H+K}E_{H+L}E_{K+L}|s(H+K)s(H+L)s(K+L)$ (13) which can only be calculated if the structure is known. Nevertheless the order of magnitude of (13) is the same as that of the other terms of (6) and consequently this term cannot really be neglected. Of course in order to calculate (13) all three crossvectors have to be measured reflexions.

In Tables 5 and 6 the triplets, the quartets (5) with three crossvectors present, and the quartets calculated by means of expression (6) [referred to as quartets (6)] are given as functions of E_3 , A_1 and

Table 5. Quartets (5) and (6) with the three crossvectors H+K, H+L and K+L in the set of measured reflexions for the model structure

Column 4 gives the figures for expression (16).

	Column 4 gives the ingules for expression (10).								
	1 Triplets		2 Quartets (5)		3 Quartets (6)		4 Quartets (16)		
$E_3 \\ A_1 \\ A_2$	nr	%	nr	%	nr	%	nr	%	
A_2 25.0 20.0 15.0 10.0 7.5 5.0 4.0 3.0 2.5 2.0 1.8 1.6 1.4 1.2 1.0 0.9 0.8 0.7	8 28 94 162 272 454 764 1370 1844 2531 3485	100 100 100 100 100 99.5 98.6 95.8 93.8	1 5 36 141 438 674 949 1074 1209 1250 1303 1368 1431 1487	100 100 100 100 100 100 99.8 99.7 99.5 99.5 99.5 99.5 99.0 98.7 98.5	7 21 66 258 489 858 1048 1206 1276 1339 1375 1409 1436 1475 1516	100 100 100 100 100 100 99.9 99.9 99.9 9	2 30 106 576 1326 2759 3467 4136 4136 4712 5254 5767	100 100 100 100 99·9 99·7 99·5 99·1 98·7 98·1	

Table 6. Quartets (5) and (6) with all crossvectors measured for the aza-steroid

Column 4 gives the figures for expression (16)									
		1		2		3		4	
	Trij	plets	Quartets (5)		Quartets (6)		Quartets (16)		
E_3	nr	%	nr	%	nr	%	nr	%	
A_1									
A_2									
25 .0			1107	100	1844	100	86	100	
20.0			1617	100	2264	100	276	100	
15.0			2285	99.8	2664	99.9	971	100	
10.0			2809	99•7	2996	99.8	3726	100	
9.0			2918	99.7	3044	99.7	4975	99.9	
8.0			2999	99.7	3097	99.7	6534	99.8	
7.0	8	100	3061	99.6	3138	99.6	8248	99.7	
6.0	21	100	3124	99.5	3185	99.4	9771	99.7	
5.0	61	100	3182	99.3	3220	99·2	11020	99.6	
4.0	143	100	3226	99.1	3240	99·2	12010	99·4	
3.0	353	100	3257	99.0	3263	99·0	12812	99·2	
2.5	583	99.8	3270	98.9	3276	98.9	13101	98.9	
2.0	980	99.7	3291	98.8	3294	98.8	13380	98.6	
1.5	1823	99·2	3314	98.5	3316	98.5	13709	98·3	
1.4	2101	98.9	5514	70 5	5510	<i>J</i> 0 <i>J</i>	15702	70 5	
1.3	2438	98·4							
1·3 1·2	2888	97.8							
1.1	3395	96.9							

$$A_{2} = E_{4} \{ E_{H+K}^{2} + E_{H+L}^{2} + E_{K+L}^{2} - 2 + 6N^{-1/2} E_{H+K} E_{H+L} E_{K+L} \}$$
(14)

respectively. Table 5 gives the results for the model structure and Table 6 for the aza-steroid.

From the tables it can be concluded that the quartets (6) are slightly better than quartets (5), but the differences are too small to be important for practical procedures. As could be expected, less reliable results are obtained by using

$$A_{2}^{*} = E_{4} \{ E_{H+K}^{2} + E_{H+L}^{2} + E_{K+L}^{2} - 2 + 6N^{-1/2} |E_{H+K} E_{H+L} E_{K+L}| \}$$
(15)

[cf. Giacovazzo, 1975, expression (14)].

Expression (6) was an approximation of

$$P_{+} = \frac{1}{2} + \frac{1}{2} \tanh E_{4} \{E_{H+K}^{2} + E_{H+L}^{2} + E_{K+L}^{2} - 2 \\ + 6N^{-1/2} E_{H+K} E_{H+L} E_{K+L} \} \{1 - [H_{4}(E_{H+K}) \\ + H_{4}(E_{H+L}) + H_{4}(E_{K+L})] (8N)^{-1} \\ + 4[E_{H+K}^{2} + E_{H+L}^{2} + E_{K+L}^{2} - 3]N^{-1} \\ + 60E_{H+K} E_{H+L} E_{K+L} N^{-11/2}\}^{-1}$$
(16)

[Giacovazzo, 1975, expression (11)]. In view of the preceding paragraph the reliability of this formula has been tested, with terms containing $E_{H+K}E_{H+L}E_{K+L}$ ignored. The results are given in column 4 of Tables 5 and 6. In the case of the model structure the reliabilities of quartets (16) and triplets are almost equal; for

the aza-steroid, however, the large differences in reliability between triplets and quartets still exist.

Concluding remarks

Although the expressions (5) and (6) of Giacovazzo (1975) suggest that they can be used for all quartets, they prove useful only for the negative quartets. The positive new quartets are found to be less reliable than the triplets, whereas the empirically derived Strengthened Quartet Relation (SQR) gives a similar reliability to that of the triplets (Schenk, 1973*a*). Therefore in practical procedures in which triplets and quartets are used simultaneously, SQR's are to be preferred.

The author is graetly indebted to Dr Carmelo Giacovazzo for extensive discussions about the subject. He thanks Dr C. H. Stam and Professor B. O. Loopstra for criticizing the manuscript.

References

- HAUPTMAN, H. A. (1974). Acta Cryst. A30, 472-476.
- GIACOVAZZO, C. (1975). Acta Cryst. A31, 252–259.
- SCHENK, H. (1973a). Acta Cryst. A 29, 77-82.
- SCHENK, H. (1973b). Acta Cryst. A 29, 480-481.
- SCHENK, H. (1974). Acta Cryst. A30, 477-481.
- SCHENK, H. & DE JONG, J. G. H. (1973). Acta Cryst. A 29, 31-34.